
© International Baccalaureate Organization 2012 

 

IB Java Examination Tool Subset 
(JETS) 

 

Diploma Programme 

 



 

Introduction 

The object-oriented programming (OOP) option of the IB computer science syllabus allows 
students to learn to program in Java, and this is a choice that most teachers would reasonably be 
expected to make—although the IB does not insist that this is so. It would be unreasonable to 
expect students to learn all of Java—with the many libraries and classes and the constantly 
changing nature of the language that would be impractical. The intention is not for students to 
become Java “experts”. The intention is to provide an unambiguous representation of essential 
OOP concepts for the examination. 

Teachers should note that sample algorithms can be found in the teacher support material for this 
course. 

Only the commands, symbols and constructs specified in JETS will be used in examination 
questions relating to the OOP option. Students will not be required to read or write answers 
involving other libraries. Students may have learned some other languages, constructs and 
classes, and may choose to use these in their examination answers. However, students are not 
permitted to use library classes and methods from any language, including Java, that would 
perform automated tasks, such as sorting and searching arrays and other collections. 

JETS also specifies a naming convention and style for examination questions. Teachers should 
familiarize their students with JETS, including the naming and style conventions. These 
conventions are intended to make examination questions clear and easily readable. Students are 
not required to follow these conventions in their answers. However, they should write answers in a 
clear, consistent and readable style, and must not use non-standard libraries that trivialize the 
solution. 

Students will not be expected to write perfect syntax in their answers (for example, a mistake in 
capitalization or a missing semi-colon would not normally be penalized) but errors that substantially 
change the meaning of the algorithm will be penalized (for example, “forgetting” an exclamation 
point is a real error). 

Students and examiners alike are expected to use the clearest, most readable style in their 
answers. Students should be especially careful to avoid careless writing and syntax that is difficult 

to read, such as double minus signs (--) or compound assignment operators like (-=). For 

example: 

x = x + 1 is clearer than x++ or x += 1 

x = x - 1 is clearer than x-- or x -= 1 



The presentation of JETS 

Style conventions 
The style conventions for JETS to be used in all examination papers will be as follows. 

JETS-code will be printed in Courier (fixed spacing) font 10.5 

point. 

All reserved words will be written in lower case bold. 

Class names will always start with an upper case letter. 

Object, variable and method names will always start with a lower case letter. 

multiWordIdentifiers will use embedded capitals to separate the words (not 

underscores). 

Identifiers will generally use whole words, not abbreviations or acronyms. 

Proper indentation will always be used. 

The order of modules is irrelevant, but the main and/or constructor method will always be placed 
at the top. 

Some examination questions may include statements such as, “recall that …”. The intention is to 
remind students of any uncommon commands and functions: 

Recall that String.indexOf(String) can be used to find the position of one string 

inside another, like this: 

String email = "exams@ibo.org";  

   int atSign = email.indexOf("@"); //result is 5 

For French and Spanish versions of examination papers: 

reserved words will remain in English 

string constants will be translated 

user-defined identifiers (class, variable and method names) will be translated as appropriate. 



The syntax of JETS 

Operators 
Arithmetic: + , - , * , / , % (students must understand the polymorphic behaviour of the 

division operator, for example int / int ==> int) 

Relational:  == , > , < , >= , <= , != 

Boolean: ! , && , || (bitwise Boolean operators & , | are not required)  

Operator precedence 
The standards for operator precedence in Java are assumed knowledge. Examination questions 
may use extra parentheses for clarity and candidates should be encouraged to do the same in 

their solutions. 

Notation for literals (values) 
string : "in quotation marks" 

char : 's' // in single quotes 

integer : 123456 or -312 

double : 124.75 (fixed point) or 1.2475E+02 (floating point) 

boolean : true , false 

Constant identifiers will be written in ALL_CAPS, using an underscore to separate words. They 

will be defined using final static, as: 

final static double NATURAL_LOG_BASE = 2.1782818; 

Primitive data types 

byte  int  long  double  char  boolean 

(short and float are not included) 

Structured data types 
String class 

StringBuffer class 

Linear Arrays : int[ ] numbers = new int[100]; 

(array of 100 integers, index 0..99) 

2-D arrays: int[ ][ ] checkers = new int[8][8]; 

Text files (sequential files) 

RandomAccessFile (fields as primitive types) 



LinkedList class (including the use of the Collection interface) 

Note: The numeric wrapper classes Integer, Double, and so on, will only be used to provide the 
functionality of static methods for doing type conversions, as demonstrated in the IBIO methods 
(below). 

Parameter passing 
Parameter passing follows the standard specification in Java, for example, primitive types are 
automatically passed by value, and structured types (arrays and objects) have their references 
passed by value (usually equivalent to pass by reference of other languages).  

Symbols 

/* multi-line 

comments */ 

// single line 

// comments 

( ) round brackets for parameters 

[ ] square brackets for subscripts in arrays 

. dot notation for dereferencing object methods and data members 

{ } for blocks of code 

{ 1 , 2 , 3 } for initializing an array 

< class > to permit the use of structured classes with the LinkedList class 

The assumed set of IBIO commands is listed below. 

IBIO input methods 
All input methods display a prompt String, accept keyboard input until the user presses the [enter] 
key, and then return a value of the specified type. It is assumed that the input routines cannot 
cause a runtime error. If the user types a String that cannot be converted to the correct type, the 
input routine returns a default value, for example, a blank String, a 0 numeric value, and so on. 

IBIO c = new IBIO();  // Instantiate new console class 

String input(String prompt) 

String input() // does not print a prompt before inputting 

String inputString(String prompt) 

char inputChar(String prompt) 

boolean inputBoolean(String prompt) 

byte inputByte(String prompt) 

int inputInt(String prompt) 



long inputLong(String prompt) 

double inputDouble(String prompt) 

IBIO output methods 
output( String ) --> outputs a String 

output( char ) --> outputs a char value 

output( boolean ) --> outputs a boolean value 

output( byte ) --> outputs a byte value 

output( int ) --> outputs an int value 

output( long ) --> outputs a long value 

output( double ) --> outputs a double value 

JETS also uses the System console output commands: 

System.out.print( string ) 

System.out.println( string ) 

  

System.in.read() is not included in JETS, although it is used  

inside IBIO. 

Loops and decisions 
if (boolean condition) 

{ ... commands ... } 

else if (boolean condition) 

{ ... commands ... } 

else 

{ ... commands ... } ; 

switch..break.. is not included in JETS, but students may use it in their answers. 

for ( start; limit; increment) 

{ ... commands ... } ; 

while (boolean condition) 

{... commands ... } ; 

do 

{ ... commands ... } 

while (boolean condition) ;  



Files 

Standard level/higher level 

BufferedReader(FileReader)—will be used to open a sequential file for input 

.ready 

.read 

.readLine 

.close 

 

PrintWriter(FileWriter)—will be used to open a sequential file for output 

.print 

.println 

.close 

 

// Serialization is not required. 

Higher level only 

RandomAccessFile 

constructor: randomAccessFile(String filename, String accessMode) 
.seek 

.length 

.read .... readInt, readDouble, readBytes, readUTF 

.write .... writeInt, writeDouble, writeBytes, writeUTF 

.close 

Standard methods 
Math class 

--------------- 
.abs,.pow,.sin,.cos,.round,.floor 

 

String class 

---------------- 
+ for concatenation 
.equals(String) 

.substring(startPos, endPos) 

.length() 

.indexOf(String) 

.compareTo(String) 

.toUpperCase() 

.toLowerCase() 

 

LinkedList class 

----------------- 
LinkedList<E> where E defines the type of elements held in the 

list 

 

Constructor LinkedList<E>()   



.add(E e) 

.add(int index, E element) 

.addFirst(E e) 

.addLast(E e) 

.clear() 

.element() 

.get(int index) 

.getFirst() 

.getLast() 

.remove() 

.remove(int index) 

.removeFirst() 

.removeLast() 

.size() 

.isEmpty() 

 

Arrays 

--------- 
.length 

 

Cast 

-------- 
(int) (double) (byte) (char) 

(numeric + "") // to convert a numeric value to a String 

Static methods and variables 
Where a class variable or method is declared static it does not change across instantiated 

objects. Students will most likely see static methods in the wrapper classes that provide utilities for 
each of the primitive equivalents. The wrapper classes themselves are not included in JETS 
although students should be aware that, for example: 

Integer.parseInt(String) 

converts a valid String representation of an integer to an int primitive. 

The IBIO input/output methods are also static. 

Understanding the new construct is required. Students must be aware that new causes an object 
to be instantiated, and that this is somewhat different from declaring a primitive data type. They 
should thoroughly understand the rules for scope and lifetime of identifier references, and that 
instances may be automatically destroyed and garbage collected when they go out of scope. 
For example, students must understand that a value stored in a method’s local variables will be 
lost when the method returns, and that this value cannot be retrieved by subsequent calls to the 
method. Static is a required concept, but will not be directly tested in code (it may appear, but the 
meaning in the code will not be directly examined). 

Dynamic memory allocation 
Students must also understand that an object type can be declared without instantiating, and that 
this reference (pointer) can be reassigned later to either a new instance or to a different existing 
instance. 



Other syntactical issues 
Java permits commands to span multiple lines. This may be done in exam questions, but only 
when it improves clarity and readability, for example, in a long parameter list: 

public int sortArray( String[ ] names , 

                      int listSize ,  

                      char ascendingOrDescending  

      ) 

 

Brackets will always be lined up, either horizontally or vertically: 

  public void printNumbers() 

  {  int x = 0; 

      while ( x < 10 ) 

      { output( x ); }   //  brackets lined up horizontally 

  }           //  brackets for method body lined up vertically 

Class scope 
public, private 

// implements and abstract are not included 

// interface is not included 

Overall structure of classes 
Students must understand the concept of a constructor and a main method, and the difference 
between them. They must also understand the concept of extends. 

Error handling 
try{ ... commands ... } 

  catch(Exception e){ ... handle the error ... }; 

 

Error handling in examinations will be limited to simply outputting an error message, setting a flag 
or returning from the method. Complex handling of specific Exception types will not be expected. 
Only the generic Exception and IOException errors must be trapped.  

  methodName() throws IOException 

// 
Students must understand the idea of throwing an exception, rather than trapping it with try..catch.. 

Example algorithms  
Algorithms to exemplify JETS, the IBIO console class and additional Java-related material may be 
added to CSopedia. 


