Searching Algorithms

Friday, 8 September 2023 10:24 AM

Linear Search

Linear Search
Find '20'

TN SN r_,-—*‘- p TN TN TN
{ \Yi

T

N g \\ / \‘
N

Binary Search
https://www.programiz.com/dsa/binary-search

4 — Computational Thinking Page 1


https://www.programiz.com/dsa/binary-search

Binary search (or half interval search) algorithm is a searching method used only in sorted
arrays. It relies on divide and conquer strategy to accomplish its purpose. In every search
iteration, half of the elements of the array are eliminated as possible solutions. Binary
search is very efficient for large arrays. Its performance makes it ideal when resorting is not
required.

In each iteration, the algorithm

1. Compares the search value with the value of the middle element of the array.
a. If the values match, then the value was found .
b. |If the search value is less than the middle element of the array,
* then the algorithm repeats its action on the sub-array to the left of
the middle element.
c. if the search value is greater than the middle element of the array,
* then the algorithm repeats its action on the sub-array to the right of
the middle element.
2. If the remaining array to be searched is empty, then the value was not found.

Programming Example 20: Binary search J
//==== Binary Search =====

VALUES = [11,12,15,16,112,118,123,145] //sorted array elements

TARGET = 15 //search value

MIN = 0

HIGH = 7 // Number of array elements -

FOUND = false

ANSWER = 0

MID =0

loop while FOUND = true AND MIN <= HIGH
MID = ((MIN + HIGH) div 2)
if VALUES[MID] = TARGET then
FOUND = true
ANSWER = MID
else if TARGET > VALUES [MID] then
MIN = MID + 1
else
HIGH = MID - 1
end if
end while
if FOUND = true then
output TARGET , "FOUND AT ARRAY INDEX" , ANSWER
else
output TARGET , " was not found"
end if

Output: 15 FOUND AT ARRAY INDEX 2

4 — Computational Thinking Page 2



Comparison table of linear search and binary search

Binary search

Linear search

Works only on sorted elements

Works on sorted as well as unsorted items.

Generally number of comparisons are less

Efficient for few elements

Efficient if the element to be found is located
in the beginning of the array or list

Generally more number of comparisons are
required if the element to be found is not
present in the beginning of the array or list

Time complexity: O(log n)

Time complexity: O(n)

4 — Computational Thinking Page 3




