Specific Heat Capacity and Specific Latent heat # **Specific Heat Capacity** We know that when we heat a substance the temperature will increase. The equation that links heat (energy) and temperature is: $$\Delta Q = mc\Delta T$$ Where ΔQ is the energy required (J), m is the mass (kg), ΔT is the temperature change c is the specific heat capacity which is the energy required to raise the temperature of 1 kg of a substance by 1 degree. It can be thought of as the heat energy 1 kg of the substance can hold before the temperature will increase by 1 degree. Specific Heat Capacity is measured in Joules per kilogram per Kelvin, J/kg K or J kg-1 K-1 # **Heating water** We can think of the energy being transferred to different volumes of water. Compare a 250 ml beaker and a 100 ml beaker, both full of water. The energy required to raise the the temperature of 250ml of water (0.25kg) by 1 degree would be 2.5 times greater than the energy required to raise 100ml (0.1kg) of water by 1 degree. ### **Changes of State** When a substance changes state there is no change in temperature. When a solid is heated energy is transferred to the particles making them vibrate more which means the temperature increases. The potential energy of the solid remains constant but the kinetic energy increases. At melting point the particles do not vibrate any faster, meaning the kinetic energy and temperature are constant. The bonds that keep the particles in a rigid shape are broken and the potential energy increases. In liquid form the particles are still in contact with each other but can slide past each other. As more energy is transferred the particles vibrate more. The kinetic energy increases but the potential energy is constant. At boiling point the particles do not vibrate any faster, meaning the kinetic energy and temperature are constant. The bonds holding the particles together are all broken, this takes much more energy than when melting since all the bonds need to be broken. When a gas is heated the particles move faster, meaning the kinetic energy and temperature increases. The potential energy stays constant. #### **Specific Latent Heat** Different substances require different amounts of energy to change them from solid to liquid and from liquid to gas. The energy required is given by the equation: $$Q=ML$$ L represents the specific latent heat which is the energy required to change 1 kg of a substance from solid to liquid or liquid to gas without a change in temperature. #### Specific Latent Heat is measured in Joules per kilogram, J/kg or J kg-1 The specific latent heat of fusion is the energy required to change 1 kg of solid into liquid The specific latent heat of vaporisation is the energy required to change 1 kg of liquid into gas. As we have just discussed, changing from a liquid to a gas takes more energy than changing a solid into a gas, so the specific latent heat of vaporisation is higher than the specific latent heat of fusion.