Kirchoff's Laws and Potential Dividers

Kirchhoff's Laws

Kirchhoff's Laws apply conservation of energy and charge principles to electrical circuits.

I_{1} I_{2} I_{4} I_{3}

Kirchoff's First Law

Electric charge is conserved in all circuits, all the charge that arrives at a point must leave it.

Current going in = current going out.

In the diagram we can say that:

$$I_1 = I_2 + I_3 + I_4$$

Kirchoff's Second Law

Energy is conserved in all circuits, for any complete circuit the sum of the EMF's is equal to the sum of the potential differences.

Energy givers = energy takers.

In the diagram we can say that:

$$\varepsilon = pd_1 + pd_2 + pd_3 + pd_4.$$

Potential Dividers

A potential divider is used to produce a desired potential difference, it can be thought of as a potential selector.

A typical potential divider consists of two or more resistors that share the emf from the battery/cell.

The p.d.s across R_1 and R_2 can be calculated using the following equations:

$$V_1 = V_0 \, \frac{R_1}{R_1 + R_2}$$

$$V_2 = V_0 \, \frac{R_2}{R_1 + R_2}$$

This actually shows us that the size of the potential difference is equal to the input potential multiplied by what proportion R_1 is of the total resistance.

If R_1 is 10 Ω and R_2 is 90 Ω , R_1 contributes a tenth of the total resistance so R_1 has a tenth of the available potential. This <u>can be rep</u>resented using:

$$\frac{R_1}{R_2} = \frac{V_1}{V_2}$$
 The ratio of the resistances is equal to the ratio of the output voltages.

Uses of potential dividers

In this potential divider the second resistor is a thermistor. When the temperature is low the resistance (R_2) is high, this makes the output voltage high. When the temperature is high the resistance (R_2) is low, this makes the output voltage low. A use of this would be a cooling fan that works harder when it is warm.

In the second potential divider the second resistor is a Light Dependant Resistor. When the light levels are low the resistance (R_2) is high, making the output voltage high. When the light levels increase the resistance (R_2) decreases, this makes the output voltage decrease. A use of this could be a street light sensor that switches the light on when the surroundings are dark.